# 逻辑回归
## 逻辑回归处理二元分类
%matplotlib inlineimport matplotlib.pyplot as plt#显示中文from matplotlib.font_manager import FontPropertiesfont=FontProperties(fname=r"c:\windows\fonts\msyh.ttc", size=10)
import numpy as npplt.figure()plt.axis([-6,6,0,1])plt.grid(True)X=np.arange(-6,6,0.1)y=1/(1+np.e**(-X))plt.plot(X,y,'b-')
## 垃圾邮件分类
import pandas as pddf=pd.read_csv('SMSSpamCollection',delimiter='\t',header=None)df.head()
from sklearn.feature_extraction.text import TfidfVectorizerfrom sklearn.linear_model.logistic import LogisticRegressionfrom sklearn.cross_validation import train_test_split#用pandas加载数据.csv文件,然后用train_test_split分成训练集(75%)和测试集(25%):X_train_raw, X_test_raw, y_train, y_test = train_test_split(df[1],df[0])#我们建一个TfidfVectorizer实例来计算TF-IDF权重:vectorizer=TfidfVectorizer()X_train=vectorizer.fit_transform(X_train_raw)X_test=vectorizer.transform(X_test_raw)#LogisticRegression同样实现了fit()和predict()方法classifier=LogisticRegression()classifier.fit(X_train,y_train)predictions=classifier.predict(X_test)for i ,prediction in enumerate(predictions[-5:]): print '预测类型:%s.信息:%s' %(prediction,X_test_raw.iloc[i])
输出结果:
预测类型:ham.信息:Waiting in e car 4 my mum lor. U leh? Reach home already?
预测类型:ham.信息:Dear got train and seat mine lower seat预测类型:spam.信息:I just really need shit before tomorrow and I know you won't be awake before like 6预测类型:ham.信息:What should i eat fo lunch senor预测类型:ham.信息:645## 二元分类效果评估方法
#混淆矩阵from sklearn.metrics import confusion_matriximport matplotlib.pyplot as plty_test = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1]y_pred = [0, 1, 0, 0, 0, 0, 0, 1, 1, 1]confusion_matrix=confusion_matrix(y_test,y_pred)print confusion_matrix
plt.matshow(confusion_matrix)plt.title(u'混淆矩阵')plt.colorbar()plt.ylabel(u'实际类型')plt.xlabel(u'预测类型')plt.show()
## 准确率
import pandas as pdimport numpy as npfrom sklearn.feature_extraction.text import TfidfVectorizerfrom sklearn.linear_model.logistic import LogisticRegressionfrom sklearn.cross_validation import train_test_split,cross_val_scoredf=pd.read_csv('SMSSpamCollection',delimiter='\t',names=["label","message"])X_train_raw, X_test_raw, y_train, y_test = train_test_split(df['message'], df['label'])vectorizer=TfidfVectorizer()X_train=vectorizer.fit_transform(X_train_raw)X_test=vectorizer.transform(X_test_raw)classifier=LogisticRegression()classifier.fit(X_train,y_train)scores=cross_val_score(classifier,X_train,y_train,cv=5)print '准确率',np.mean(scores),scores
输出结果:
## 精确率和召回率
scikit-learn结合真实类型数据,提供了一个函数来计算一组预测值的精确率和召回率。
%matplotlib inlineimport numpy as npimport pandas as pdfrom sklearn.feature_extraction.text import TfidfVectorizerfrom sklearn.linear_model.logistic import LogisticRegressionfrom sklearn.cross_validation import train_test_split, cross_val_scoredf['label']=pd.factorize(df['label'])[0]X_train_raw, X_test_raw, y_train, y_test = train_test_split(df['message'],df['label'])vectorizer = TfidfVectorizer()X_train = vectorizer.fit_transform(X_train_raw)X_test = vectorizer.transform(X_test_raw)classifier = LogisticRegression()classifier.fit(X_train, y_train)precisions = cross_val_score(classifier, X_train, y_train, cv=5, scoring='precision')print u'精确率:', np.mean(precisions), precisionsrecalls = cross_val_score(classifier, X_train, y_train, cv=5, scoring='recall')print u'召回率:', np.mean(recalls), recallsplt.scatter(recalls, precisions)
输出结果:
精确率: 0.990243902439 [ 1. 0.95121951 1. 1. 1. ]
召回率: 0.691498103666 [ 0.65486726 0.69026549 0.69911504 0.71681416 0.69642857]
## 计算综合评价指标
fls=cross_val_score(classifier,X_train,y_train,cv=5,scoring='f1')print '综合指标评价',np.mean(fls),fls
输出结果:
## 网格搜索
import pandas as pdfrom sklearn.feature_extraction.text import TfidfVectorizerfrom sklearn.linear_model.logistic import LogisticRegressionfrom sklearn.grid_search import GridSearchCVfrom sklearn.pipeline import Pipelinefrom sklearn.cross_validation import train_test_splitfrom sklearn.metrics import precision_score, recall_score, accuracy_scorepipeline = Pipeline([('vect', TfidfVectorizer(stop_words='english')),('clf', LogisticRegression())])parameters = {'vect__max_df': (0.25, 0.5, 0.75),'vect__stop_words': ('english', None),'vect__max_features': (2500, 5000, 10000, None),'vect__ngram_range': ((1, 1), (1, 2)),'vect__use_idf': (True, False),'vect__norm': ('l1', 'l2'),'clf__penalty': ('l1', 'l2'),'clf__C': (0.01, 0.1, 1, 10),}grid_search = GridSearchCV(pipeline, parameters, n_jobs=-1, verbose=1, scoring='accuracy', cv=3)df=pd.read_csv('SMSSpamCollection',delimiter='\t',names=["label","message"])df['label']=pd.factorize(df['label'])[0]X_train, X_test, y_train, y_test = train_test_split(df['message'],df['label'])grid_search.fit(X_train, y_train)print('最佳效果:%0.3f' % grid_search.best_score_)
输出结果;
最佳效果:0.986
print '最优参数组合'best_parameters=grid_search.best_estimator_.get_params()
for param_name in sorted(parameters.keys()): print '\t%s:%r' %(param_name,best_parameters[param_name]) predictions=grid_search.predict(X_test)print '准确率:',accuracy_score(y_test,predictions)print '精确率:',precision_score(y_test,predictions)print '召回率:',recall_score(y_test,predictions)
输出结果:
clf__C:10
clf__penalty:'l2' vect__max_df:0.25 vect__max_features:2500 vect__ngram_range:(1, 2) vect__norm:'l2' vect__stop_words:None vect__use_idf:True准确率: 0.979899497487精确率: 0.974683544304召回率: 0.865168539326# logistics 多分类
import pandas as pddf=pd.read_csv("logistic_data/train.tsv",header=0,delimiter='\t')print df.count()print df.head()df.Phrase.head(10)df.Sentiment.describe()df.Sentiment.value_counts()df.Sentiment.value_counts()/df.Sentiment.count()
import pandas as pdfrom sklearn.feature_extraction.text import TfidfVectorizerfrom sklearn.linear_model.logistic import LogisticRegressionfrom sklearn.cross_validation import train_test_splitfrom sklearn.metrics import classification_report,accuracy_score,confusion_matrixfrom sklearn.pipeline import Pipelinefrom sklearn.grid_search import GridSearchCVpipeline=Pipeline([ ('vect',TfidfVectorizer(stop_words='english')), ('clf',LogisticRegression())])parameters={ 'vect__max_df':(0.25,0.5), 'vect__ngram_range':((1,1),(1,2)), 'vect__use_idf':(True,False), 'clf__C':(0.1,1,10), }df=pd.read_csv("logistic_data/train.tsv",header=0,delimiter='\t')X,y=df.Phrase,df.Sentiment.as_matrix()X_train,X_test,y_train,y_test=train_test_split(X,y,train_size=0.5)grid_search=GridSearchCV(pipeline,parameters,n_jobs=-1,verbose=1,scoring="accuracy")grid_search.fit(X_train,y_train)print u'最佳效果:%0.3f'%grid_search.best_score_print u'最优参数组合:'best_parameters=grid_search.best_estimator_.get_params()for param_name in sorted(parameters.keys()): print '\t%s:%r'%(param_name,best_parameters[param_name])
数据结果:
Fitting 3 folds for each of 24 candidates, totalling 72 fits
[Parallel(n_jobs=-1)]: Done 46 tasks | elapsed: 2.0min [Parallel(n_jobs=-1)]: Done 72 out of 72 | elapsed: 4.5min finished
最佳效果:0.619 最优参数组合: clf__C:10 vect__max_df:0.25 vect__ngram_range:(1, 2) vect__use_idf:False
## 多类分类效果评估
predictions=grid_search.predict(X_test)print u'准确率',accuracy_score(y_test,predictions)print u'混淆矩阵',confusion_matrix(y_test,predictions)print u'分类报告',classification_report(y_test,predictions)
数据结果:
准确率 0.636614122773
混淆矩阵 [[ 1133 1712 595 67 1] [ 919 6136 6006 553 35] [ 213 3212 32637 3634 138] [ 22 420 6548 8155 1274] [ 4 45 546 2411 1614]]分类报告 precision recall f1-score support 0 0.49 0.32 0.39 3508 1 0.53 0.45 0.49 13649 2 0.70 0.82 0.76 39834 3 0.55 0.50 0.52 16419 4 0.53 0.35 0.42 4620avg / total 0.62 0.64 0.62 78030